Ultrastructural Features of Beta Leaves Infected with Beet Yellows Virus
نویسندگان
چکیده
A cytochemical and electron microscope study has been made of leaves of sugar beet infected with beet yellows virus. Inclusions of particles, which agree in size with beet yellows virus particles isolated by other investigators, have been localized in the ground cytoplasm, in the chloroplasts, and in the nuclei. These particles are circa 100 A in diameter and have an electron-transparent core of 30 to 40 A. Use of acridine orange, azure B, and pyronine Y has revealed that the cytoplasmic inclusion bodies, which consist wholly of the elongate particles, have a strong RNA reaction removable by RNase pretreatment. Particles observed in the chloroplasts may or may not be associated with lipid spheres. If they are, the particles are confined to the periphery of the spheres. In this position the particles are arranged tangentially and are further arranged parallel into groups which lie at various angles to one another. Within the groups the particles are regularly spaced in a three dimensional lattice. Particles located free in the stromal regions are often arranged regularly in curved rows which lie parallel to one another so that a three dimensional lattice is formed. The dispersed and compact forms of virus inclusions are described and related to the condition of the associated cytoplasm. The ground cytoplasm of cells associated with the sieve elements contains numerous ribosomes. A decrease in the number of ribosomes is concomitant with the increase in size of virus aggregations in a cell. Vesiculation of some component of the cytoplasm occurs during the period of virus replication. The vesicles are approximately 100 mmicro in diameter and could be derived from the dictyosomes. At later stages of infection these vesicles collapse and convoluted membranous material appears.
منابع مشابه
An Explanation for the Difference in Photosynthetic Capabilities of Healthy and Beet Yellows Virus-infected Sugar Beets (Beta vulgaris L.).
Sugar beets (Beta vulgaris L.) infected with the Beet Yellows Virus exhibit lower rates of net photosynthesis at light saturation than do healthy plants. These Pn reductions were correlated with increases in leaf resistance to water vapor loss. Theoretical analyses demonstrated that, although the leaf resistance to water vapor loss increases could account for a major part of the net photosynthe...
متن کاملBeet poleroviruses: close friends or distant relatives?
UNLABELLED SUMMARY Taxonomy: There are three members of the genus Polerovirus (family Luteoviridae) that induce yellowing of sugar beet: Beet mild yellowing virus (BMYV), Beet chlorosis virus (BChV) and Beet western yellows virus-USA (BWYV-USA, Fig. 1). Non-beet-infecting isolates of BWYV found particularly within Europe have now been re-named Turnip yellows virus (TuYV). Species-specific antib...
متن کاملComplex molecular architecture of beet yellows virus particles.
Closteroviruses possess exceptionally long filamentous virus particles that mediate protection and active transport of the genomic RNA within infected plants. These virions are composed of a long "body" and short "tail" whose principal components are the major and minor capsid proteins, respectively. Here we use biochemical, genetic, and ultrastructural analyses to dissect the molecular composi...
متن کاملRelation of Beet Yellows Virus to the Phloem and to Movement in the Sieve Tube
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations...
متن کاملChemical suppression of the symptoms of two virus diseases.
Carbendazim applied at the rate of z g per plant to the roots of tobacco (Nicotiana tabacum cv. White Burley) plants before infection with tobacco mosaic virus (TMV) caused very considerable reduction in the severity of disease symptoms in systemically infected leaves but did not affect their virus content. Leaves of untreated, infected plants had a greatly reduced chlorophyll content IOO days ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 31 شماره
صفحات -
تاریخ انتشار 1966